A novel laser desorption mass spectrometry technique for the in-situ detection of biomolecules on space missions

Niels Ligterink*†¹, Valentine Grimaudo², Pavel Moreno-García³, Reto Wiesendanger², Rustam Lukmanov², Marek Tulej², Robert Lindner⁴, Peter Wurz², Pascale Ehrenfreund⁵, and Andreas Riedo^{2,5}

¹Center for Space and Habitability, University of Bern – Switzerland
²Space Research and Planetary Sciences, Physics Institute, University of Bern – Switzerland
³Interfacial Electrochemistry Group, Department of Chemistry and Biochemistry, University of Bern – Switzerland

⁴Life Support and Physical Sciences Instrumentation Section, European Space Agency, ESTEC – Netherlands

 5 Sackler laboratory for astrophysics, Leiden Observatory, Leiden University – Netherlands

Abstract

In this talk, we present a novel Laser Desorption – Mass Spectrometry (LDMS) system, for the in-situ investigation of biomolecules on surfaces of solar-system objects. Specifically developed for space exploration, the system consists of a miniature Time-of-Flight MS and single laser desorption / ionization scheme. The first measurements performed on amino acids show these are identified by unique, sparse mass features and at a sensitivity down to 10 femtomole.

^{*}Speaker

[†]Corresponding author: niels.ligterink@csh.unibe.ch